Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.5 - Linear Equations - 9.5 Exercises - Page 646: 16

Answer

$y = \frac{1}{4}{x^2}{e^{{x^2}}} - \frac{1}{8}{e^{{x^2}}} + \frac{C}{{{e^{{x^2}}}}}$

Work Step by Step

$$\eqalign{ & y' + 2xy = {x^3}{e^{{x^2}}} \cr & {\text{Write }}y'{\text{ as }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} + 2xy = {x^3}{e^{{x^2}}} \cr & {\text{The differential equation is in the form }}\frac{{dy}}{{dx}} + P\left( x \right)y = Q\left( x \right) \cr & {\text{With }}P\left( x \right) = 2x{\text{ and }}Q\left( x \right) = {x^3}{e^{{x^2}}} \cr & {\text{Find the integrating factor }}I\left( x \right) = {e^{\int {P\left( x \right)} dx}} \cr & I\left( x \right) = {e^{\int {2xdx} }} = {e^{{x^2}}} \cr & {\text{Multiply the differential equation by the integrating factor}} \cr & {e^{{x^2}}}\frac{{dy}}{{dx}} + 2x{e^{{x^2}}}y = {x^3}{e^{{x^2}}}{e^{{x^2}}} \cr & {e^{{x^2}}}\frac{{dy}}{{dx}} + 2x{e^{{x^2}}}y = {x^3}{e^{2{x^2}}} \cr & {\text{Write the left side in the form }}\frac{d}{{dx}}\left[ {I\left( x \right)y} \right] \cr & \frac{d}{{dx}}\left[ {{e^{{x^2}}}y} \right] = {x^3}{e^{2{x^2}}} \cr & d\left[ {{e^{{x^2}}}y} \right] = {x^3}{e^{2{x^2}}}dx \cr & {\text{Integrate both sides}} \cr & {e^{{x^2}}}y = \underbrace {\int {{x^3}{e^{2{x^2}}}} dx}_{{\text{Integrate by parts}}}{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Integrating }}\int {{x^3}{e^{2{x^2}}}} dx \cr & {\text{Let }}u = {x^2} \to du = 2xdx \cr & dv = x{e^{2{x^2}}}dx \to v = \frac{1}{4}{e^{2{x^2}}} \cr & \int {udv} = uv - \int {vdu} \cr & = \frac{1}{4}{x^2}{e^{2{x^2}}} - \int {\left( {\frac{1}{4}{e^{2{x^2}}}} \right)\left( {2x} \right)} dx \cr & = \frac{1}{4}{x^2}{e^{2{x^2}}} - \frac{1}{4}\int {{e^{2{x^2}}}\left( {2x} \right)} dx \cr & = \frac{1}{4}{x^2}{e^{2{x^2}}} - \frac{1}{8}{e^{2{x^2}}} + C \cr & {\text{Substitute the previous result into }}\left( {\bf{1}} \right) \cr & {e^{{x^2}}}y = \frac{1}{4}{x^2}{e^{2{x^2}}} - \frac{1}{8}{e^{2{x^2}}} + C \cr & {\text{Solve for }}y \cr & y = \frac{1}{{4{e^{{x^2}}}}}{x^2}{e^{2{x^2}}} - \frac{1}{{8{e^{{x^2}}}}}{e^{2{x^2}}} + \frac{C}{{{e^{{x^2}}}}} \cr & y = \frac{1}{4}{x^2}{e^{{x^2}}} - \frac{1}{8}{e^{{x^2}}} + \frac{C}{{{e^{{x^2}}}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.