Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.5 - Linear Equations - 9.5 Exercises - Page 646: 14

Answer

$r = \frac{{{e^t}}}{{\ln t}} + \frac{C}{{\ln t}}$

Work Step by Step

$$\eqalign{ & t\ln t\frac{{dr}}{{dt}} + r = t{e^t} \cr & {\text{Divide both sides by }}t\ln t \cr & \frac{{dr}}{{dt}} + \frac{1}{{t\ln t}}r = \frac{{t{e^t}}}{{t\ln t}} \cr & \frac{{dr}}{{dt}} + \frac{1}{{t\ln t}}r = \frac{{{e^t}}}{{\ln t}} \cr & {\text{The differential equation is in the form }}\frac{{dr}}{{dt}} + P\left( t \right)r = Q\left( t \right) \cr & {\text{With }}P\left( t \right) = \frac{1}{{t\ln t}}{\text{ and }}Q\left( t \right) = \frac{{{e^t}}}{{\ln t}} \cr & {\text{Find the integrating factor }}I\left( t \right) = {e^{\int {P\left( t \right)} dt}} \cr & I\left( t \right) = {e^{\int {\frac{1}{{t\ln t}}dt} }} = {e^{\ln \left| {\ln t} \right|}} = \ln t \cr & {\text{Multiply the differential equation by the integrating factor}} \cr & \left( {\frac{{dr}}{{dt}} + \frac{1}{{t\ln t}}r} \right)\ln t = \left( {\frac{{{e^t}}}{{\ln t}}} \right)\ln t \cr & \ln t\frac{{dr}}{{dt}} + \frac{1}{t}r = {e^t} \cr & {\text{Write the left side in the form }}\frac{d}{{dt}}\left[ {I\left( t \right)r} \right] \cr & \frac{d}{{dt}}\left[ {r\ln t} \right] = {e^t} \cr & d\left[ {r\ln t} \right] = {e^t}dt \cr & {\text{Integrate both sides}} \cr & r\ln t = {e^t} + C \cr & {\text{Solve for }}r \cr & r = \frac{{{e^t}}}{{\ln t}} + \frac{C}{{\ln t}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.