Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 9 - Section 9.5 - Linear Equations - 9.5 Exercises - Page 646: 12

Answer

$y=-\frac{1}{3}+Ce^{x^3}$

Work Step by Step

The integrating factor for the given linear differential equation is $I=e^{\int -3x^2 dx}=e^{-x^3}$. Solve for $y$: $y'-3x^2y=x^2$ (Multiply by the integrating factor) $y'e^{-x^3}+(-3x^2)e^{-x^3}y=x^2e^{-3x^2}$ $\frac{d(ye^{-x^3})}{dx}=x^2e^{-x^3}$ (Separate the variable) $d(ye^{-x^3})=x^2e^{-x^3}dx$ (Integrate) $\int d(ye^{-x^3})=\int x^2e^{-x^3}dx$ $ye^{-x^3}=-\frac{e^{-x^3}}{3}+C$ (Multiply by $e^{x^3}$) $y=-\frac{1}{3}+Ce^{x^3}$ Thus, the solution is $y=-\frac{1}{3}+Ce^{x^3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.