Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 8 - Section 8.1 - Arc Length - 8.1 Exercises - Page 565: 4

Answer

$L = \int_1^3 {\sqrt {1 + {e^{2x}}} dx} $

Work Step by Step

$$\eqalign{ & {\text{Let }}y = {e^x},{\text{ }}1 \leqslant x \leqslant 3 \cr & {\text{Differentiating}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{e^x}} \right] \cr & \frac{{dy}}{{dx}} = {e^x} \cr & \cr & {\text{Use the arc lenght formula }} \cr & L = \int_a^b {\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} dx} \cr & {\text{Substituting the limits and the derivative of the function}} \cr & L = \int_1^3 {\sqrt {1 + {{\left( {{e^x}} \right)}^2}} dx} \cr & {\text{Simplifying}} \cr & L = \int_1^3 {\sqrt {1 + {e^{2x}}} dx} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.