Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 8 - Section 8.1 - Arc Length - 8.1 Exercises - Page 565: 16

Answer

$ \ln(2+\sqrt{3})$

Work Step by Step

Given: $y = \ln{\cos x}$ $dy/dx = -\tan x$ and $1+(dy/dx)^{2} = 1+\tan^{2} x = \sec^{2} x$ Therefore, $L = \int^{\frac{\pi}{3}}_{0} \sqrt{\sec^{2} x}dx $ $= \int^{\frac{\pi}{3}}_{0} \sec x dx$ $ = [\ln|\sec x +\tan x|]^{\frac{\pi}{3}}_{0}$ $ = \ln(2+\sqrt{3}) - \ln(1+0) $ $= \ln(2+\sqrt{3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.