Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.6 - Integration Using Tables and Computer Algebra Systems - 7.6 Exercises - Page 528: 44

Answer

$\frac{1}{8}\left( {x\left( {2{x^2} - 1} \right)\sqrt {1 - {x^2}} + {{\sin }^{ - 1}}x} \right) + C$

Work Step by Step

$$\eqalign{ & \int {{x^2}\sqrt {1 - {x^2}} } dx \cr & {\text{Integrate by using a CAS }}\left( {{\text{See image below}}} \right){\text{ we obtain:}} \cr & \int {{x^2}\sqrt {1 - {x^2}} } dx = \frac{1}{8}\left( {{{\sin }^{ - 1}}x + x\left( {2{x^2} - 1} \right)\sqrt {1 - {x^2}} } \right) + C \cr & \cr & {\text{Integrating by tables using the entry 31}} \cr & \int {{u^2}\sqrt {{a^2} - {u^2}} } du = \frac{u}{8}\left( {2{u^2} - {a^2}} \right)\sqrt {{a^2} - {u^2}} + \frac{{{a^4}}}{8}{\sin ^{ - 1}}\left( {\frac{u}{a}} \right) + C \cr & {\text{Therefore}}{\text{, let }}a = 1,{\text{ }}u = x \cr & \int {{x^2}\sqrt {1 - {x^2}} } dx = \frac{x}{8}\left( {2{x^2} - 1} \right)\sqrt {1 - {x^2}} + \frac{1}{8}{\sin ^{ - 1}}x + C \cr & {\text{Factoring out }}\frac{1}{8} \cr & \int {{x^2}\sqrt {1 - {x^2}} } dx = \frac{1}{8}\left( {x\left( {2{x^2} - 1} \right)\sqrt {1 - {x^2}} + {{\sin }^{ - 1}}x} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.