Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.6 - Integration Using Tables and Computer Algebra Systems - 7.6 Exercises - Page 528: 27

Answer

$\frac{1}{{15}}\sin y\left( {3{{\cos }^4}y + 4{{\cos }^2}y + 8} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {{{\cos }^5}y} dy \cr & {\text{Using the entry 74 }}\left( {{\text{Integrals on Reference Pages 6}}--{\text{1}}0} \right) \cr & {\text{Entry 74 }}\int {{{\cos }^n}udu} = \frac{1}{n}{\cos ^{n - 1}}u\sin u + \frac{{n - 1}}{n}\int {{{\cos }^{n - 2}}u} du \cr & \cr & {\text{Let }}u = y,{\text{ }}du = dy,{\text{ }}n = 5,{\text{ we obtain}} \cr & \int {{{\cos }^5}y} dy = \frac{1}{5}{\cos ^{5 - 1}}y\sin y + \frac{{5 - 1}}{5}\int {{{\cos }^{5 - 2}}y} dy \cr & \int {{{\cos }^5}y} dy = \frac{1}{5}{\cos ^4}y\sin y + \frac{4}{5}\int {{{\cos }^3}y} dy \cr & \cr & {\text{For }}\int {{{\cos }^3}y} dy{\text{ use the entry 68}} \cr & {\text{Entry 68 }}\int {{{\cos }^3}udu} = \frac{1}{3}\left( {2 + {{\cos }^2}u} \right)\sin u + C \cr & \int {{{\cos }^5}y} dy = \frac{1}{5}{\cos ^4}y\sin y + \frac{4}{5}\left[ {\frac{1}{3}\left( {2 + {{\cos }^2}y} \right)\sin y} \right] + C \cr & \int {{{\cos }^5}y} dy = \frac{1}{5}{\cos ^4}y\sin y + \frac{4}{{15}}\left( {2 + {{\cos }^2}y} \right)\sin y + C \cr & {\text{Factoring out }}\frac{1}{{15}}\sin y \cr & \int {{{\cos }^5}y} dy = \frac{1}{{15}}\sin y\left[ {3{{\cos }^4}y + 4\left( {2 + {{\cos }^2}y} \right)} \right] + C \cr & \int {{{\cos }^5}y} dy = \frac{1}{{15}}\sin y\left( {3{{\cos }^4}y + 4{{\cos }^2}y + 8} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.