Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.6 - Integration Using Tables and Computer Algebra Systems - 7.6 Exercises - Page 528: 40

Answer

$ - \frac{1}{4}\cot x{\csc ^3}x - \frac{3}{8}\cot x\csc x + \frac{3}{8}\ln \left| {\csc x - \cot x} \right| + C$

Work Step by Step

$$\eqalign{ & \int {{{\csc }^5}x} dx \cr & {\text{Integrate by using a CAS }}\left( {{\text{See image below}}} \right){\text{ we obtain:}} \cr & {\text{Integrating by tables using the entry 78}} \cr & {\text{Entry 78:}}\int {{{\csc }^n}u} du = \frac{{ - 1}}{{n - 1}}\cot u{\csc ^{n - 2}}u + \frac{{n - 2}}{{n - 1}}\int {{{\csc }^{n - 2}}u} du \cr & {\text{Let }}n = 5 \cr & \int {{{\csc }^5}x} dx = \frac{{ - 1}}{{5 - 1}}\cot x{\csc ^{5 - 2}}x + \frac{{5 - 2}}{{5 - 1}}\int {{{\csc }^{5 - 2}}x} dx \cr & \int {{{\csc }^5}x} dx = - \frac{1}{4}\cot x{\csc ^3}x + \frac{3}{4}\int {{{\csc }^3}x} dx \cr & {\text{Use the entry 72}} \cr & = - \frac{1}{4}\cot x{\csc ^3}x + \frac{3}{4}\left( {\frac{{ - 1}}{2}\cot x\csc x + \frac{1}{2}\ln \left| {\csc x - \cot x} \right|} \right) + C \cr & {\text{Simplifying}} \cr & = - \frac{1}{4}\cot x{\csc ^3}x - \frac{3}{8}\cot x\csc x + \frac{3}{8}\ln \left| {\csc x - \cot x} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.