Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 498: 2

Answer

$\frac{{{{\cos }^9}y}}{9} - \frac{{{{\cos }^7}y}}{7} + C$

Work Step by Step

$$\eqalign{ &\text{Let }I= \int {{{\cos }^6}y{{\sin }^3}y} dy \cr & {\text{Split }}{\sin ^3}y{\text{ as si}}{{\text{n}}^2}y\sin y \cr & I= \int {{{\cos }^6}y{{\sin }^2}y} \sin ydy \cr & {\text{Rewrite }}{\sin ^2}y{\text{ using }}{\sin ^2}y + {\cos ^2}y = 1 \cr & I = \int {{{\cos }^6}y\left( {1 - {{\cos }^2}y} \right)} \sin ydy \cr & {\text{Multiply}} \cr & I= \int {\left( {{{\cos }^6}y - {{\cos }^8}y} \right)} \sin ydy \cr & \cr & {\text{Integrate by the substitution method}} \cr & {\text{Let }}u = \cos y,{\text{ }}du = - \sin ydy,{\text{ }} - du = \sin ydy,{\text{ then}} \cr & I= \int {\left( {{u^6} - {u^8}} \right)} \left( { - 1} \right)du \cr & = \int {\left( {{u^8} - {u^6}} \right)} du \cr & {\text{Use the power rule }}\int {{u^n}} du = \frac{{{u^{n + 1}}}}{{n + 1}} + C \cr & I= \frac{{{u^9}}}{9} - \frac{{{u^7}}}{7} + C \cr & {\text{Write in terms of }}y,{\text{ substitute }}\cos y{\text{ for }}u \cr & I= \frac{{{{\cos }^9}y}}{9} - \frac{{{{\cos }^7}y}}{7} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.