Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 498: 18

Answer

$\frac{\sin^3 x}{3}+C$

Work Step by Step

$\int \tan^2 x\cos^3 x\ dx$ $=\int\frac{\sin^2 x}{\cos^2 x}*\cos^3 x\ dx$ $=\int\sin^2 x\cos x\ dx$ We use u substitution. Let $u=\sin x$. Then, $du=\cos x\ dx$. $=\int u^2 du$ $=\frac{u^3}{3}+C$ $=\boxed{\frac{\sin^3 x}{3}+C}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.