Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.2 - Trigonometric Integrals - 7.2 Exercises - Page 498: 15

Answer

$\frac{\sec ^4x}{4} + C$

Work Step by Step

$$\eqalign{ &\text{Let } I= \int {\sin x{{\sec }^5}x} dx \cr & {\text{Use the reciprocal identity }}\sec x = \frac{1}{{\cos x}} \cr & \int {\sin x{{\sec }^5}x} dx = \int {\sin x\left( {\frac{1}{{{{\cos }^5}x}}} \right)} dx \cr & {\text{Integrate by the substitution method}} \cr & {\text{Let }}u = \cos x,{\text{ }}du = - \sin xdx,{\text{ }} - du = \sin xdx \cr & {\text{Substituting}} \cr & \int {\sin x\left( {\frac{1}{{{{\cos }^5}x}}} \right)} dx = \int {\left( {\frac{1}{{{u^5}}}} \right)} \left( { - 1} \right)du \cr & = - \int {\frac{1}{{{u^5}}}} du \cr & = - \int {{u^{ - 5}}} du \cr & {\text{Use the power rule }}\int {{u^n}} du = \frac{{{u^{n + 1}}}}{{n + 1}} + C \cr & = - \frac{{{u^{ - 4}}}}{{ - 4}} + C \cr & = \frac{1}{{{4u^4}}} + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}\cos x{\text{ for }}u \cr & = \frac{1}{{{{4\cos }^4}x}} + C \cr & = \frac{{\sec ^4}x}{4} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.