Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.1 - Integration by Parts - 7.1 Exercises - Page 490: 9

Answer

$\frac{1}{2}w^2\ln w-\frac{1}{4}w^2+C$

Work Step by Step

Consider $u=\ln w$ and $dv=w dw$. Then, $du=\frac{1}{w} dw$ and $v=\frac{1}{2}w^2$. Using the Integration by Parts, $\int w\ln w dw=\int \ln w (w dw)$ $=(\ln w)\cdot \frac{1}{2}w^2-\int \frac{1}{2}w^2\cdot \frac{1}{w}dw$ $=\frac{1}{2}w^2\ln w-\int \frac{1}{2}wdw$ $=\frac{1}{2}w^2\ln w-\frac{1}{4}w^2+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.