Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.1 - Integration by Parts - 7.1 Exercises - Page 490: 22

Answer

$\frac{{{e^x}}}{{{\pi ^2} + 1}}\left( {\sin \pi x - \pi \cos \pi x} \right) + C$

Work Step by Step

$$\eqalign{ & \int {{e^x}\sin \pi x} dx \cr & {\text{Integrate by parts}} \cr & {\text{Let }}u = {e^x},{\text{ }}du = {e^x}dx \cr & dv = \sin \pi xdx,{\text{ }}v = - \frac{1}{\pi }\cos \pi x \cr & {\text{Using the integration by parts formula}} \cr & \int {udv} = uv - \int {vdu} \cr & \int {{e^x}\sin \pi x} dx = \left( {{e^x}} \right)\left( { - \frac{1}{\pi }\cos \pi x} \right) - \int {\left( { - \frac{1}{\pi }\cos \pi x} \right)\left( {{e^x}} \right)dx} \cr & \int {{e^x}\sin \pi x} dx = - \frac{{{e^x}}}{\pi }\cos \pi x + \frac{1}{\pi }\int {{e^x}\cos \pi xdx} \cr & \cr & {\text{Integrate by parts }}\int {{e^x}\cos \pi xdx} \cr & {\text{Let }}u = {e^x},{\text{ }}du = {e^x}dx \cr & dv = \cos \pi xdx,{\text{ }}v = \frac{1}{\pi }\sin \pi x \cr & \int {{e^x}\sin \pi x} dx = - \frac{{{e^x}}}{\pi }\cos \pi x + \frac{1}{\pi }\left( {\int {{e^x}\cos \pi xdx} } \right) \cr & \int {{e^x}\sin \pi x} dx = - \frac{{{e^x}}}{\pi }\cos \pi x + \frac{1}{\pi }\left( {\frac{{{e^x}}}{\pi }\sin \pi x - \int {\frac{{{e^x}}}{\pi }\sin \pi x} dx} \right) \cr & \int {{e^x}\sin \pi x} dx = - \frac{{{e^x}}}{\pi }\cos \pi x + \frac{{{e^x}}}{{{\pi ^2}}}\sin \pi x - \frac{1}{{{\pi ^2}}}\int {{e^x}\sin \pi x} dx \cr & \cr & {\text{Add }}\frac{1}{{{\pi ^2}}}\int {{e^x}\sin \pi x} dx{\text{ to both sides}} \cr & \int {{e^x}\sin \pi x} dx + \frac{1}{{{\pi ^2}}}\int {{e^x}\sin \pi x} dx = - \frac{{{e^x}}}{\pi }\cos \pi x + \frac{{{e^x}}}{{{\pi ^2}}}\sin \pi x \cr & \frac{{{\pi ^2} + 1}}{{{\pi ^2}}}\int {{e^x}\sin \pi x} dx = - \frac{{{e^x}}}{\pi }\cos \pi x + \frac{{{e^x}}}{{{\pi ^2}}}\sin \pi x \cr & \cr & {\text{Multiply both sides by }}\frac{{{\pi ^2}}}{{{\pi ^2} + 1}} \cr & \int {{e^x}\sin x} dx = \frac{{{\pi ^2}}}{{{\pi ^2} + 1}}\left( { - \frac{{{e^x}}}{\pi }\cos \pi x} \right) + \frac{{{\pi ^2}}}{{{\pi ^2} + 1}}\left( {\frac{{{e^x}}}{{{\pi ^2}}}\sin \pi x} \right) + C \cr & \int {{e^x}\sin x} dx = \frac{\pi }{{{\pi ^2} + 1}}\left( { - {e^x}\cos \pi x} \right) + \frac{1}{{{\pi ^2} + 1}}\left( {{e^x}\sin \pi x} \right) + C \cr & \int {{e^x}\sin x} dx = \frac{{{e^x}}}{{{\pi ^2} + 1}}\left( { - \pi \cos \pi x + \sin \pi x} \right) + C \cr & \int {{e^x}\sin x} dx = \frac{{{e^x}}}{{{\pi ^2} + 1}}\left( {\sin \pi x - \pi \cos \pi x} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.