Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.1 - Integration by Parts - 7.1 Exercises - Page 490: 12

Answer

$ - \frac{{{t^2}}}{\beta }\cos \beta t + \frac{{2t}}{{{\beta ^2}}}\sin \beta t + \frac{2}{{{\beta ^3}}}\cos \beta t + C$

Work Step by Step

$$\eqalign{ & \int {{t^2}\sin \beta t} dt \cr & {\text{Integrating by parts}}{\text{, }} \cr & {\text{Let }}u = {t^2},{\text{ }}du = 2tdt \cr & {\text{ }}dv = \sin \beta tdt,{\text{ }}v = - \frac{1}{\beta }\cos \beta t \cr & {\text{Using integration by parts formula}} \cr & \int u dv = uv - \int {vdu} \cr & \int {{t^2}\sin \beta t} dt = \left( {{t^2}} \right)\left( { - \frac{1}{\beta }\cos \beta t} \right) - \int {\left( { - \frac{1}{\beta }\cos \beta t} \right)\left( {2t} \right)dt} \cr & \int {{t^2}\sin \beta t} dt = - \frac{{{t^2}}}{\beta }\cos \beta t + \frac{2}{\beta }\int {t\cos \beta tdt} \cr & \cr & {\text{Integrate by parts }}\int {t\cos \beta tdt} \cr & {\text{Let }}u = t,{\text{ }}du = dt \cr & {\text{ }}dv = \cos \beta tdt,{\text{ }}v = \frac{1}{\beta }\sin \beta t \cr & \int {{t^2}\sin \beta t} dt = - \frac{{{t^2}}}{\beta }\cos \beta t + \frac{2}{\beta }\left[ {\frac{t}{\beta }\sin \beta t - \int {\frac{1}{\beta }\sin \beta tdt} } \right] \cr & \int {{t^2}\sin \beta t} dt = - \frac{{{t^2}}}{\beta }\cos \beta t + \frac{{2t}}{{{\beta ^2}}}\sin \beta t - \frac{2}{\beta }\int {\frac{1}{\beta }\sin \beta tdt} \cr & {\text{Integrating}} \cr & \int {{t^2}\sin \beta t} dt = - \frac{{{t^2}}}{\beta }\cos \beta t + \frac{{2t}}{{{\beta ^2}}}\sin \beta t - \frac{2}{{{\beta ^2}}}\left( { - \frac{1}{\beta }\cos \beta t} \right) + C \cr & {\text{Simplifying}} \cr & \int {{t^2}\sin \beta t} dt = - \frac{{{t^2}}}{\beta }\cos \beta t + \frac{{2t}}{{{\beta ^2}}}\sin \beta t + \frac{2}{{{\beta ^3}}}\cos \beta t + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.