Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.5 - Average Value of a Function - 6.5 Exercises - Page 475: 6

Answer

${f_{avg}} = \frac{1}{{24}}$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \frac{{{x^2}}}{{{{\left( {{x^3} + 3} \right)}^2}}},{\text{ }}\left[ { - 1,1} \right] \cr & {\text{Use The Mean Value Theorem for Integrals }} \cr & {f_{avg}} = \frac{1}{{b - a}}\int_a^b {f\left( x \right)} dx \cr & {\text{Therefore}}{\text{,}} \cr & {f_{avg}} = \frac{1}{{1 - \left( { - 1} \right)}}\int_{ - 1}^1 {\frac{{{x^2}}}{{{{\left( {{x^3} + 3} \right)}^2}}}} dx \cr & {\text{Rewrite the integrand}} \cr & {f_{avg}} = \frac{1}{{2\left( 3 \right)}}\int_{ - 1}^1 {\frac{{3{x^2}}}{{{{\left( {{x^3} + 3} \right)}^2}}}} dx \cr & {f_{avg}} = \frac{1}{{2\left( 3 \right)}}\int_{ - 1}^1 {{{\left( {{x^3} + 3} \right)}^{ - 2}}\left( {3{x^2}} \right)} dx \cr & {\text{Integrate using the general power rule for integration}} \cr & {f_{avg}} = \frac{1}{{2\left( 3 \right)}}\left[ {\frac{{{{\left( {{x^3} + 3} \right)}^{ - 1}}}}{{ - 1}}} \right]_{ - 1}^1 \cr & {f_{avg}} = - \frac{1}{6}\left[ {\frac{1}{{{x^3} + 3}}} \right]_{ - 1}^1 \cr & {\text{Evaluate and simplify}} \cr & {f_{avg}} = - \frac{1}{6}\left[ {\frac{1}{{{{\left( 1 \right)}^3} + 3}} - \frac{1}{{{{\left( { - 1} \right)}^3} + 3}}} \right] \cr & {f_{avg}} = - \frac{1}{6}\left[ {\frac{1}{4} - \frac{1}{2}} \right] \cr & {f_{avg}} = \frac{1}{{24}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.