Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.5 - Average Value of a Function - 6.5 Exercises - Page 475: 4

Answer

${f_{avg}} = \frac{1}{3}\left( {e - \root 4 \of e } \right)$

Work Step by Step

$$\eqalign{ & f\left( z \right) = \frac{{{e^{1/z}}}}{{{z^2}}},{\text{ }}\left[ {1,4} \right] \cr & {\text{Use The Mean Value Theorem for Integrals }} \cr & {f_{avg}} = \frac{1}{{b - a}}\int_a^b {f\left( x \right)} dx \cr & {\text{Therefore}}{\text{,}} \cr & {f_{avg}} = \frac{1}{{4 - 1}}\int_1^4 {\left( {\frac{{{e^{1/z}}}}{{{z^2}}}} \right)} dz \cr & {\text{Rewrite the integrand}} \cr & {f_{avg}} = - \frac{1}{{4 - 1}}\int_1^4 {{e^{1/z}}\left( { - \frac{1}{{{z^2}}}} \right)} dz \cr & {\text{Integrate using }}\int {{e^u}} du = {e^u} + C,{\text{ }}u = \frac{1}{z},{\text{ }}du = - \frac{1}{{{z^2}}}du,{\text{ so}} \cr & {f_{avg}} = - \frac{1}{3}\left[ {{e^{1/z}}} \right]_1^4 \cr & {\text{Evaluate and simplify}} \cr & {f_{avg}} = - \frac{1}{3}\left[ {{e^{1/4}} - {e^1}} \right] \cr & {f_{avg}} = \frac{1}{3}\left( {e - \root 4 \of e } \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.