Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.5 - Average Value of a Function - 6.5 Exercises - Page 475: 5

Answer

${g_{avg}} = \frac{9}{2}{\tan ^{ - 1}}\left( 2 \right)$

Work Step by Step

$$\eqalign{ & g\left( t \right) = \frac{9}{{1 + {t^2}}},{\text{ }}\left[ {0,2} \right] \cr & {\text{Use The Mean Value Theorem for Integrals }} \cr & {f_{avg}} = \frac{1}{{b - a}}\int_a^b {f\left( x \right)} dx \cr & {\text{Therefore}}{\text{,}} \cr & {g_{avg}} = \frac{1}{{2 - 0}}\int_0^2 {\frac{9}{{1 + {t^2}}}} dt \cr & {g_{avg}} = \frac{9}{2}\int_0^2 {\frac{1}{{1 + {t^2}}}} dt \cr & {\text{Integrate using }}\int {\frac{1}{{1 + {x^2}}}} dx = {\tan ^{ - 1}}x,{\text{ so}} \cr & {g_{avg}} = \frac{9}{2}\left[ {{{\tan }^{ - 1}}t} \right]_0^2 \cr & {\text{Evaluate and simplify}} \cr & {g_{avg}} = \frac{9}{2}\left[ {{{\tan }^{ - 1}}\left( 2 \right) - {{\tan }^{ - 1}}\left( 0 \right)} \right] \cr & {g_{avg}} = \frac{9}{2}{\tan ^{ - 1}}\left( 2 \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.