Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.1 - Areas Between Curves - 6.1 Exercises - Page 443: 25

Answer

$A = 9$

Work Step by Step

$$\eqalign{ & {\text{Let the functions }}y = \sqrt x ,{\text{ }}y = \frac{1}{3}x,{\text{ on the interval }}0 \leqslant x \leqslant 16 \cr & {\text{Graph the curves using Geogebra }}\left( {{\text{Shown Below}}} \right) \cr & \cr & {\text{Find the intersection points}} \cr & y = y \cr & \sqrt x = \frac{1}{3}x \cr & {\text{Solve for }}x \cr & {\left( {\sqrt x } \right)^2} = \frac{1}{3}x \cr & x = \frac{1}{9}{x^2} \cr & 9x = {x^2} \cr & {x^2} - 9x = 0 \cr & x\left( {x - 9} \right) = 0 \cr & x = 0,{\text{ }}x = 9 \cr & {\text{We have the intervals }}\left[ {0,9} \right]{\text{ and }}\left[ {9,16} \right] \cr & \cr & {\text{We can find the area integrating with respect to }}x \cr & A = \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx{\text{ }}\left( {\bf{1}} \right){\text{ }}\left( {{\text{see page 439}}} \right) \cr & {\text{From the graph }} \cr & \sqrt x \geqslant \frac{1}{3}x{\text{ on }}\left[ {0,9} \right]{\text{ and }}\frac{1}{3}x \geqslant \sqrt x {\text{ on }}\left[ {9,16} \right] \cr & {\text{Therefore}} \cr & A = \int_0^9 {\left( {\sqrt x - \frac{1}{3}x} \right)} dx + \int_9^{16} {\left( {\frac{1}{3}x - \sqrt x } \right)} dx \cr & {\text{Integrating}} \cr & A = \left[ {\frac{{{x^{3/2}}}}{{3/2}} - \frac{1}{3}\left( {\frac{{{x^2}}}{2}} \right)} \right]_0^9 + \left[ {\frac{1}{3}\left( {\frac{{{x^2}}}{2}} \right) - \frac{{{x^{3/2}}}}{{3/2}}} \right]_9^{16} \cr & A = \left[ {\frac{{2{x^{3/2}}}}{3} - \frac{{{x^2}}}{6}} \right]_0^9 + \left[ {\frac{{{x^2}}}{6} - \frac{{2{x^{3/2}}}}{3}} \right]_9^{16} \cr & {\text{Evaluate the limits}} \cr & A = \left[ {\frac{{2{{\left( 9 \right)}^{3/2}}}}{3} - \frac{{{{\left( 9 \right)}^2}}}{6}} \right] + \left[ {\frac{{{{\left( {16} \right)}^2}}}{6} - \frac{{2{{\left( {16} \right)}^{3/2}}}}{3}} \right] - \left[ {\frac{{{{\left( 9 \right)}^2}}}{6} - \frac{{2{{\left( 9 \right)}^{3/2}}}}{3}} \right] \cr & A = \frac{9}{2} + 0 - \left( { - \frac{9}{2}} \right) \cr & A = 9 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.