Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.1 - Areas Between Curves - 6.1 Exercises - Page 443: 16

Answer

$A = 36$

Work Step by Step

$$\eqalign{ & {\text{Let the functions}} \cr & y = {x^2} - 4x,{\text{ }}y = 2x \cr & {\text{Graph the curves using Geogebra }}\left( {{\text{Shown Below}}} \right) \cr & \cr & {\text{We can find the area integrating with respect to }}x \cr & {\text{Use }}A = \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx,{\text{ with }}f\left( x \right) \geqslant g\left( x \right) \cr & {\text{Let }} \cr & f\left( x \right) = 2x{\text{, }}g\left( x \right) = {x^2} - 4x \cr & x = a = 0{\text{ and }}x = b = 6 \cr & {\text{Therefore}}{\text{,}} \cr & \underbrace {A = \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx}_ \Downarrow \cr & A = \int_0^6 {\left[ {2x - \left( {{x^2} - 4x} \right)} \right]} dx \cr & A = \int_0^6 {\left( {2x - {x^2} + 4x} \right)} dx \cr & A = \int_0^6 {\left( {6x - {x^2}} \right)} dx \cr & {\text{Integrating}} \cr & A = \left[ {3{x^2} - \frac{1}{3}{x^3}} \right]_0^6 \cr & A = \left[ {3{{\left( 6 \right)}^2} - \frac{1}{3}{{\left( 6 \right)}^3}} \right] - \left[ {3{{\left( 0 \right)}^2} - \frac{1}{3}{{\left( 0 \right)}^3}} \right] \cr & {\text{Simplifying}} \cr & A = 36 - 0 \cr & A = 36 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.