Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 6 - Section 6.1 - Areas Between Curves - 6.1 Exercises - Page 443: 11

Answer

$A = \frac{{23}}{6}$

Work Step by Step

$$\eqalign{ & {\text{Let the functions}} \cr & y = {x^2} + 2,{\text{ }}y = - x - 1,{\text{ }}x = 0,{\text{ }}x = 1 \cr & {\text{Graph the curves using Geogebra }}\left( {{\text{Shown Below}}} \right) \cr & \cr & {\text{We can find the area integrating with respect to }}x \cr & {\text{Use }}A = \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx,{\text{ with }}f\left( x \right) \geqslant g\left( x \right) \cr & {\text{Let }} \cr & f\left( x \right) = {x^2} + 1,{\text{ }}g\left( x \right) = - x - 1 \cr & x = a = 0{\text{ and }}x = b = 1 \cr & {\text{Therefore}}{\text{,}} \cr & \underbrace {A = \int_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]} dx}_ \Downarrow \cr & A = \int_0^1 {\left[ {\left( {{x^2} + 2} \right) - \left( { - x - 1} \right)} \right]} dx \cr & A = \int_0^1 {\left( {{x^2} + 2 + x + 1} \right)} dx \cr & A = \int_0^1 {\left( {{x^2} + x + 3} \right)} dx \cr & {\text{Integrating}} \cr & A = \left[ {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2} + 3x} \right]_0^1 \cr & A = \left[ {\frac{{{{\left( 1 \right)}^3}}}{3} + \frac{{{{\left( 1 \right)}^2}}}{2} + 3\left( 1 \right)} \right] - \left[ {\frac{{{{\left( 0 \right)}^3}}}{3} + \frac{{{{\left( 0 \right)}^2}}}{2} + 2\left( 0 \right)} \right] \cr & {\text{Simplifying}} \cr & A = \frac{1}{3} + \frac{1}{2} + 3 \cr & A = \frac{{23}}{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.