Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 416: 47

Answer

$4\sqrt 3 - 6$

Work Step by Step

$$\eqalign{ & \text{Let } I=\int_3^4 {\sqrt {\frac{3}{x}} } dx \cr & {\text{Using the radical property }}\sqrt {\frac{m}{n}} = \frac{{\sqrt m }}{{\sqrt n }} \cr & I= \int_3^4 {\frac{{\sqrt 3 }}{{\sqrt x }}} dx \cr & {\text{Using the radical property }}\sqrt x = {x^{ - 1/2}} \cr & I = \int_3^4 {\frac{{\sqrt 3 }}{{{x^{1/2}}}}} dx \cr & = \int_3^4 {\sqrt 3 } {x^{ - 1/2}}dx \cr & = \sqrt 3 \int_3^4 {{x^{ - 1/2}}} dx \cr & {\text{Integrate using the power rule}} \cr & I = \sqrt 3 \left[ {\frac{{{x^{1/2}}}}{{1/2}}} \right]_3^4 \cr & = 2\sqrt 3 \left[ {\sqrt x } \right]_3^4 \cr & {\text{Using the fundamental theorem of calculus}}{\text{, part 2}} \cr & I=2\sqrt 3 \left[ {\sqrt x } \right]_3^4 = 2\sqrt 3 \left( {\sqrt 4 - \sqrt 3 } \right) \cr & {\text{Simplify}} \cr & I=2\sqrt 3 \left( {2 - \sqrt 3 } \right) \cr & = 4\sqrt 3 - 6 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.