Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.4 - Indefinite Integrals and the Net Change Theorem - 5.4 Exercises - Page 416: 43

Answer

$\frac{e^4-1}{e^2}$

Work Step by Step

$$\eqalign{ &\text{Let }I= \int_{ - 2}^2 {\left( {\sinh x + \cosh x} \right)} dx \cr & {\text{Integrate using the formulas }} \cr & \int {\sinh x} dx = \cosh x + C{\text{ and }}\int {\cosh x} dx = \sinh x + C \cr & I = \left[ {\cosh x + \sinh x} \right]_{ - 2}^2 \cr & {\text{Using the fundamental theorem of calculus}}{\text{, part 2}} \cr & I = \left[ {\cosh \left( 2 \right) + \sinh \left( 2 \right)} \right] - \left[ {\cosh \left( { - 2} \right) + \sinh \left( { - 2} \right)} \right] \cr & {\text{where cosh}}\left( { - x} \right) = \cosh x{\text{ and }}\sinh \left( { - x} \right) = - \sinh x \cr & = \left[ {\cosh \left( 2 \right) + \sinh \left( 2 \right)} \right] - \left[ {\cosh \left( 2 \right) - \sinh \left( 2 \right)} \right] \cr & I = \cosh \left( 2 \right) + \sinh \left( 2 \right) - \cosh \left( 2 \right) + \sinh \left( 2 \right) \cr & = 2\sinh \left( 2 \right) \cr & = 2\cdot\frac{e^2-e^{-2}}{2}\cr &=e^2-\frac{1}{e^2}\cr &=\frac{e^4-1}{e^2}} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.