Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.3 - The Fundamental Theorem of Calculus - 5.3 Exercises - Page 406: 20

Answer

$\frac{{dy}}{{dx}} = \frac{{\sqrt {1 + x} }}{{{x^2}}}$

Work Step by Step

$$\eqalign{ & y = \int_{1/x}^4 {\sqrt {1 + \frac{1}{t}} } dt \cr & {\text{Use the integral property }}\int_a^b {f\left( x \right)} dx = - \int_b^a {f\left( x \right)} dx{\text{ }}\left( {{\text{page 391}}} \right) \cr & y = - \int_4^{1/x} {\sqrt {1 + \frac{1}{t}} } dt \cr & {\text{Let }}u = \frac{1}{x},{\text{ we can use Part 1 of the Fundamental Theorem }} \cr & {\text{of calculus with the chain rule as follows}} \cr & \frac{{dy}}{{dx}} = \frac{{dy}}{{du}}\frac{{du}}{{dx}} \cr & {\text{Substituting }}y = - \int_4^{1/x} {\sqrt {1 + \frac{1}{t}} } dt \cr & \frac{{dy}}{{dx}} = \frac{d}{{du}}\left[ { - \int_4^{1/x} {\sqrt {1 + \frac{1}{t}} } dt} \right]\frac{{du}}{{dx}} \cr & \frac{{dy}}{{dx}} = - \frac{d}{{du}}\left[ {\int_4^{1/x} {\sqrt {1 + \frac{1}{t}} } dt} \right]\frac{{du}}{{dx}} \cr & {\text{Substitute }}u{\text{ for }}\frac{1}{x} \cr & \frac{{dy}}{{dx}} = - \frac{d}{{du}}\left[ {\int_4^u {\sqrt {1 + \frac{1}{t}} } dt} \right]\frac{{du}}{{dx}} \cr & {\text{Use Part 1 of the Fundamental Theorem of calculus}} \cr & \frac{{dy}}{{dx}} = - \sqrt {1 + \frac{1}{u}} \frac{d}{{dx}}\left[ {\frac{1}{x}} \right] \cr & \frac{{dy}}{{dx}} = - \sqrt {1 + \frac{1}{u}} \left( { - \frac{1}{{{x^2}}}} \right) \cr & \frac{{dy}}{{dx}} = \frac{1}{{{x^2}}}\sqrt {1 + \frac{1}{u}} \cr & {\text{Write in terms of }}x{\text{ substitute }}\frac{1}{x}{\text{ for }}u \cr & \frac{{dy}}{{dx}} = \frac{1}{{{x^2}}}\sqrt {1 + \frac{1}{{1/x}}} \cr & \frac{{dy}}{{dx}} = \frac{{\sqrt {1 + x} }}{{{x^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.