Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.3 - The Fundamental Theorem of Calculus - 5.3 Exercises - Page 406: 14

Answer

$A'\left( w \right) = - {e^{1 + {w^2}}}$

Work Step by Step

$$\eqalign{ & A\left( w \right) = \int_w^{ - 1} {{e^{1 + {t^2}}}} dt \cr & {\text{Use the integral property }}\int_a^b {f\left( x \right)} dx = - \int_b^a {f\left( x \right)} dx{\text{ }} \cr & A\left( w \right) = - \int_{ - 1}^w {{e^{1 + {t^2}}}} dt \cr & {\text{Differentiate both sides with respect to }}w \cr & A'\left( w \right) = \frac{d}{{dw}}\left[ { - \int_{ - 1}^w {{e^{1 + {t^2}}}} dt} \right] \cr & A'\left( w \right) = - \frac{d}{{dw}}\left[ {\int_{ - 1}^w {{e^{1 + {t^2}}}} dt} \right] \cr & {\text{Use Part 1 of the Fundamental Theorem of calculus}} \cr & g\left( w \right) = \int_a^w {f\left( t \right)} dt,{\text{ }}a \leqslant w \leqslant b,{\text{ }} \Rightarrow {\text{ }}g'\left( w \right) = f\left( w \right) \cr & {\text{Let }}f\left( t \right) = {e^{1 + {t^2}}} \cr & f\left( w \right) = {e^{1 + {w^2}}} \cr & {\text{Therefore}}{\text{,}} \cr & A'\left( w \right) = - \frac{d}{{dw}}\left[ {\int_{ - 1}^w {{e^{1 + {t^2}}}} dt} \right] \cr & A'\left( w \right) = - {e^{1 + {w^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.