Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Section 5.3 - The Fundamental Theorem of Calculus - 5.3 Exercises - Page 406: 18

Answer

$\frac{{dy}}{{dx}} = {e^{ - {{\tan }^2}x}}{\sec ^2}x$

Work Step by Step

$$\eqalign{ & y = \int_0^{\tan x} {{e^{ - {t^2}}}dt} \cr & {\text{Let }}u = \tan x,{\text{ we can use Part 1 of the Fundamental Theorem }} \cr & {\text{of calculus with the chain rule as follows}} \cr & \frac{{dy}}{{dx}} = \frac{{dy}}{{du}}\frac{{du}}{{dx}} \cr & {\text{Substituting }}y = \int_0^{\tan x} {{e^{ - {t^2}}}dt} \cr & \frac{{dy}}{{dx}} = \frac{d}{{du}}\left[ {\int_0^{\tan x} {{e^{ - {t^2}}}dt} } \right]\frac{{du}}{{dx}} \cr & {\text{Substitute }}u{\text{ for }}\tan x \cr & \frac{{dy}}{{dx}} = \frac{d}{{du}}\left[ {\int_0^u {{e^{ - {t^2}}}dt} } \right]\frac{d}{{dx}}\left[ {\tan x} \right] \cr & {\text{Use Part 1 of the Fundamental Theorem of calculus}} \cr & \frac{{dy}}{{dx}} = {e^{ - {u^2}}}\left( {{{\sec }^2}x} \right) \cr & {\text{Write in terms of }}x{\text{ substitute }}\tan x{\text{ for }}u \cr & \frac{{dy}}{{dx}} = {e^{ - {{\tan }^2}x}}\left( {{{\sec }^2}x} \right) \cr & \frac{{dy}}{{dx}} = {e^{ - {{\tan }^2}x}}{\sec ^2}x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.