Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Review - True-False Quiz - Page 428: 20

Answer

FALSE

Work Step by Step

Consider $f(x)=\frac{|x|}{x}$ Then $\int _{-1}^{1} f(x) dx=\int _{-1}^{1} \frac{|x|}{x}dx$ $\int _{-1}^{1} \frac{|x|}{x}dx=\int _{-1}^{0}(-1)dx+\int _{0}^{1} (1)dx$ $=(-x) _{0}^{1} +(x) _{0}^{1} $ $=-1+1$ $=0$ Here, the function $f(x)=\frac{|x|}{x}$ has only one jump discontinuity , that is at $x=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.