Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Review - Exercises - Page 431: 76

Answer

$3$

Work Step by Step

Let $w=t-2$. Using the substitution method, $\int_2^{2+h}\sqrt{1+t^3}dt=\int_0^h\sqrt{1+(w+2)^3}dw$ It follows by the Fundamental Theorem of Calculus in Part 1 that $\frac{d}{dh}\int_0^h\sqrt{1+(w+2)^3}dw=\sqrt{1+(h+2)^3}=\sqrt{1+h^3+6h^2+12h+8}=\sqrt{h^3+6h^2+12h+9}$ Now, find the limit: $\lim\limits_{h \to 0}\frac{1}{h}\int_2^{2+h}\sqrt{1+t^3}dt=\lim\limits_{h \to 0}\frac{\int_2^{2+h}\sqrt{1+t^3}dt}{h}$ $=\lim\limits_{h \to 0}\frac{\int_0^h\sqrt{1+(w+2)^3}dw}{h}$ (Apply the L'Hospital Rule) $=\lim\limits_{h \to 0}\frac{{d}{dh}\int_0^h\sqrt{1+(w+2)^3}dw}{\frac{d}{dh}(h)}$ $=\lim\limits_{h \to 0}\frac{\sqrt{h^3+6h^2+12h+9}}{1}$ $=\lim\limits_{h \to 0}\sqrt{h^3+6h^2+12h+9}$ (Evaluate the limit by direct substitution) $=\sqrt{0^3+6\cdot 0^2+12\cdot 0+9}$ $=\sqrt{9}$ $=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.