Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Review - Exercises - Page 431: 73

Answer

$f(x)=\frac{(2x-1)e^{2x}}{1-e^{-x}}$

Work Step by Step

$\int_1^xf(t)dt=(x-1)e^{2x}+\int_1^xe^{-t}f(t)dt$ (Differentiate both sides with respect to $x$) $\frac{d}{dx}(\int_1^xf(t)dt)=\frac{d}{dx}((x-1)e^{2x}+\int_1^xe^{-t}f(t)dt)$ (Apply the Sum Rule for Derivatives) $\frac{d}{dx}\int_1^xf(t)dt=\frac{d}{dx}((x-1)e^{2x})+\frac{d}{dx}\int_1^xe^{-t}f(t)dt$ (Apply the Product Rule for Derivatives) $\frac{d}{dx}\int_1^xf(t)dt=\frac{d}{dx}(x-1)\cdot e^{2x}+(x-1)\frac{d}{dx}e^{2x}+\frac{d}{dx}\int_1^xe^{-t}f(t)dt$ (Apply the Fundamental Theorem of Calculus in Part 1) $f(x)=1\cdot e^{2x}+(x-1)\cdot 2e^{2x}+e^{-x}f(x)$ (Find $f(x)$) $f(x)=1e^{2x}+(2x-2)e^{2x}+e^{-x}f(x)$ $f(x)=(2x-1)e^{2x}+e^{-x}f(x)$ $f(x)-e^{-x}f(x)=(2x-1)e^{2x}$ $(1-e^{-x})f(x)=(2x-1)e^{2x}$ $f(x)=\frac{(2x-1)e^{2x}}{1-e^{-x}}$ Thus, $f(x)=\frac{(2x-1)e^{2x}}{1-e^{-x}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.