Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Review - Exercises - Page 270: 47

Answer

$\frac{{dy}}{{dx}} = 2x^2\cosh \left( {{x^2}} \right) + \sinh \left( {{x^2}} \right)$

Work Step by Step

$$\eqalign{ & y = x\sinh \left( {{x^2}} \right) \cr & {\text{Differentiate}} \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {x\sinh \left( {{x^2}} \right)} \right] \cr & {\text{Use the product rule}} \cr & \frac{{dy}}{{dx}} = x\frac{d}{{dx}}\left[ {\sinh \left( {{x^2}} \right)} \right] + \sinh \left( {{x^2}} \right)\frac{d}{{dx}}\left[ x \right] \cr & {\text{Use }}\frac{d}{{dx }}\left[ {\sinh u} \right] = \cosh u\frac{{du}}{{dx}},{\text{ let }}u = {x^2} \cr & \frac{{dy}}{{dx}} = x\cosh \left( {{x^2}} \right)\frac{d}{{dx}}\left[ {{x^2}} \right] + \sinh \left( {{x^2}} \right)\frac{d}{{dx}}\left[ x \right] \cr & {\text{Compute derivatives and simplify}} \cr & \frac{{dy}}{{dx}} = \cosh \left( {{x^2}} \right)\left( {2x^2} \right) + \sinh \left( {{x^2}} \right)\left( 1 \right) \cr & \frac{{dy}}{{dx}} = 2x^2\cosh \left( {{x^2}} \right) + \sinh \left( {{x^2}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.