Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 16 - Section 16.2 - Line Integrals - 16.2 Exercise - Page 1141: 16

Answer

$\frac{722}{15}$

Work Step by Step

$\int_{c} y dx+ z dy +x dz $; C: $ x= \sqrt t, y=t, z=t^{2}$ Line integral, $1\leq t\leq 4$ $\displaystyle\int _{1}^{4}\left( t\times\frac{1}{2\sqrt t}+t^2+\sqrt t\times2t \right ) dt $ $=\displaystyle\int _{1}^{4}\left(\frac{1}{2}\times\sqrt t+t^2+2t\sqrt t\right) dt$ $=\left(\frac{t^{3/2}}{2(3/2)} +\frac{t^3}{3}+\frac{2t^{5/2}}{5/2}\right)\bigg |_1^4$ $=\frac{8}{3}+\frac{64}{3}+\frac{4(32)}{5}-\frac{1}{3}-\frac{1}{3}-\frac{4}{5}$ $=\frac{70}{3} + \frac{124}{5}$ $=\frac{722}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.