Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 16 - Section 16.2 - Line Integrals - 16.2 Exercise - Page 1141: 15

Answer

$\frac{\pi}{2}-\frac{1}{6}\times\sqrt 2 $

Work Step by Step

$\int_{c} z dx+xy dy+y^{2}dz$ Line integral where $c$ is the curve: $x=\sin t, z= \tan t, y= \cos t$ $\displaystyle\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan t \times \cos t +\sin^{2}t\times \cos t\times(-\sin t) +\cos^{2}t\times \sec^{2}t$ =$\left[-\cos t-\frac{1}{3}\sin^{3}t+t\right ] | ^{\frac{\pi}{4}}_{\frac{-\pi}{4}}$ = $[(-\frac{1}{\sqrt 2}-\frac{1}{3}\times (\frac{1}{\sqrt 2})^{3}+\frac{\pi}{4})-(-(\frac{1}{\sqrt 2})-(\frac{1}{3}\times (\frac{1}{\sqrt 2})^{3})-\frac{\pi}{4})] $ = $\frac{\pi}{4}+\frac{\pi}{4}-\frac{1}{3}\times\sqrt 2$ = $\frac{\pi}{2}-\frac{1}{6}\times\sqrt 2 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.