Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 16 - Section 16.2 - Line Integrals - 16.2 Exercise - Page 1141: 1

Answer

$\frac{4}{3}(10^{\frac{3}{2}} − 1)$

Work Step by Step

$x = t^{2},y=2t, 0 ≤ t≤ 3$ $\int_{C}y ds$ = $\int_{0}^{3}2t\sqrt {{(\frac{dx}{dt})^{2}}+{(\frac{dy}{dt})^{2}}}ds$= $\int_{0}^{3}2t\sqrt {{(2t)^{2}}+{(2)^{2}}}ds$= $\int_{0}^{3}2t\sqrt {{4(t)^{2}}+{4}}ds$= $\int_{0}^{3}4t\sqrt {{t^{2}}+{1}}ds$= $\frac{4}{3}(t^{2}+1)^{\frac{3}{2}}|_{0}^{3}$= $\frac{4}{3}(10^{\frac{3}{2}} − 1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.