Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.6 - Triple Integrals - 15.6 Exercise - Page 1094: 50

Answer

$\dfrac{1}{10}\pi kh^5$

Work Step by Step

Consider $I_z=\iiint_{E} (x^2+y^2) \rho(x,y,z) dV$ or, $=k\int_{0}^{2 \pi} \int_{0}^{h}\int_{0}^{z}(r^2)r dr dz d\theta $ or, $=k\int_{0}^{2 \pi} \int_{0}^{h}\int_{0}^{z}(r^3) dr dz d\theta $ or, $=k \int_{0}^{2 \pi} d\theta \int_{0}^{h} \int_{0}^{z}(r^3) dr dz $ or, $=2\pi k \int_0^h [\dfrac{z^4}{4}] dz $ or, $=2\pi k [\dfrac{z^5}{20}]_0^h $ or, $I_z=\dfrac{1}{10}\pi kh^5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.