Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.6 - Triple Integrals - 15.6 Exercise - Page 1094: 48

Answer

$I_x= \dfrac{M(b^2+c^2)}{12}$, $I_y= \dfrac{M(a^2+c^2)}{12}$, $I_z= \dfrac{M(a^2+b^2)}{12}$ $M=kabc$

Work Step by Step

Consider $I_x=\iiint_{E} (y^2+z^2) \rho(x,y,z) dV$ or, $=k\int_{-c/2}^{c/2} \int_{-b/2}^{b/2}\int_{-a/2}^{a/2}(y^2+z^2) dx dy dz $ or, $=k\int_{-c/2}^{c/2} \int_{-b/2}^{b/2}(ay^2+az^2) dy dz $ or, $=k \int_{-c/2}^{c/2} (\dfrac{ay^3}{3}+az^2y)_{-b/2}^{b/2} dz $ or, $=k \int_{-c/2}^{c/2} (\dfrac{ab^3}{(3)(4)}+abz^2) dz $ or, $= (k)(\dfrac{ab^3z}{12}+\dfrac{abz^3}{3})_{-c/2}^{c/2}$ or, $= \dfrac{kabc(b^2+c^2)}{12}$ Let $M=kabc$ Thus, $I_x= \dfrac{M(b^2+c^2)}{12}$ Hence, $I_x= \dfrac{M(b^2+c^2)}{12}$, $I_y= \dfrac{M(a^2+c^2)}{12}$, $I_z= \dfrac{M(a^2+b^2)}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.