Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.6 - Triple Integrals - 15.6 Exercise - Page 1094: 47

Answer

$I_x=I_y=I_z= \dfrac{2kL^5}{3}$

Work Step by Step

Consider $I_x=I_y=I_z=\iiint_{E} (y^2+z^2) \rho(x,y,z) dV$ or, $=k\int_{0}^L\int_{0}^{L}\int_0^L (y^2+z^2) dx dy dz $ or, $=k^L\int_{0}^{L} (y^2x+z^2x)_0^L dy dz $ or, $=(kL) \int_{0}^{L} (y^2+z^2) dy dz $ or, $=(kL) \int_{0}^{L} (L^3+z^2L) dz $ or, $= (kL)[\dfrac{zL^3}{3}+\dfrac{z^3L}{3}]_0^L$ or, $= \dfrac{2kL^5}{3}$ Hence, $I_x=I_y=I_z= \dfrac{2kL^5}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.