Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.4 - Applications of Double Integrals - 15.4 Exercise - Page 1078: 26

Answer

$$ \begin{aligned} I_{x}&=\frac{4}{9} \rho, \end{aligned} $$ $$ \begin{aligned} I_{y} &=\rho\left(\pi^{2}-4\right), \end{aligned} $$ $$ \overline{\bar{y}}=\frac{\sqrt 2}{3} $$ and $$ \overline{\bar{x}}=\sqrt {\frac{\left(\pi^{2}-4\right)}{ 2 } }. $$

Work Step by Step

A lamina with constant density $\rho(x, y)= \rho $ occupies the given region $D$ : $$ D=\left\{(x, y ) | \quad y \geq 0 ,\, \quad 0 \leq x\leq \pi ,\, y= \sin x \right\} $$ So, the moment of inertia of the lamina about the $x$-axis is: $$ \begin{aligned} I_{x}&=\int_{0}^{\pi} \int_{0}^{\sin x} \rho y^{2} d y d x \\ &=\frac{1}{3} \rho \int_{0}^{\pi} \sin ^{3} x d x \\ &=\frac{1}{3} \rho \int_{0}^{\pi}\left(1-\cos ^{2} x\right) \sin x d x \\ &=\frac{1}{3} \rho\left[-\cos \theta+\frac{1}{3} \cos ^{3} \theta\right]_{0}^{\pi} \\ &=\frac{4}{9} \rho \end{aligned} $$ and the moment of inertia of the lamina about the $y$-axis is: $$ \begin{aligned} I_{y} &=\int_{0}^{\pi} \int_{0}^{\sin x} \rho x^{2} d y d x \\ &=\rho \int_{0}^{\pi} x^{2} \sin x d x \\ &\quad\quad\quad \text {use integration by parts with}\\ & \quad\quad\quad \left[\begin{array}{c}{u=x^{2}, \quad\quad dv= \sin x d x} \\ {d u= 2x dx, \quad\quad v=-\cos x }\end{array}\right], \text { then }\\ &=\rho[-x^{2}\cos x+2 \int x \cos x d x \\ &\quad\quad\quad \text {use integration by parts with}\\ & \quad\quad\quad \left[\begin{array}{c}{u=x, \quad\quad dv= \cos x d x} \\ {d u= dx, \quad\quad v=\sin x }\end{array}\right], \text { then we get }\\ &=\rho\left[-x^{2} \cos x+2 x \sin x+2 \cos x\right]_{0}^{\pi} \\ &=\rho\left(\pi^{2}-4\right) \end{aligned} $$ Notice that the mass of the region $D$ is given by: $$ \begin{aligned} m&=\iint_{D} \rho(x, y) d A \\ &=\int_{0}^{\pi} \int_{0}^{\sin x} \rho d y d x\\ &=\rho \int_{0}^{\pi} \sin x d x \\ &=\rho[-\cos x]_{0}^{\pi} \\ &=2 \rho \end{aligned} $$ So, the radius of gyration $\overline{\bar{y}}$ with respect to the $x$-axis is given by: $$ \overline{\bar{y}}^{2}=\frac{I_{x}}{m}=\frac{\frac{4}{9} \rho}{2 \rho}=\frac{2}{9} \Rightarrow \overline{\bar{y}}=\frac{\sqrt 2}{3}, $$ and the radius of gyration $\overline{\bar{x}}$ with respect to the $y$-axis is given by: $$ \overline{\bar{x}} ^{2}=\frac{I_{y}}{m}=\frac{\rho\left(\pi^{2}-4\right)}{ 2 \rho}=\frac{\left(\pi^{2}-4\right)}{ 2 } \Rightarrow \overline{\bar{x}}=\sqrt {\frac{\left(\pi^{2}-4\right)}{ 2 } }. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.