Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.4 - Applications of Double Integrals - 15.4 Exercise - Page 1078: 23

Answer

$$ \begin{aligned} I_{x}& =\frac{1}{3} \rho b h^{3} , \end{aligned} $$ $$ \begin{aligned} I_{y} &=\frac{1}{3} \rho b^{3} h, \end{aligned} $$ $$ \overline{\bar{y}}=\frac{h}{\sqrt{3}}, $$ $$ \overline{\bar{x}}=\frac{b}{\sqrt{3}}. $$

Work Step by Step

A lamina with constant density $\rho(x, y)= \rho $ occupies the given region : The rectangle is: $0 \leq x \leq b,\quad 0 \leq y \leq h$. The moment of inertia of the lamina about the $x$-axis is: $$ \begin{aligned} I_{x}& =\iint_{D} y^{2} \rho(x, y) d A \\ &=\int_{0}^{h} \int_{0}^{b} \rho y^{2} d x d y \\ &=\rho \int_{0}^{b} d x \int_{0}^{h} y^{2} d y \\ &=\rho[x]_{0}^{b}\left[\frac{1}{3} y^{3}\right]_{0}^{h}\\ &=\rho b\left(\frac{1}{3} h^{3}\right) \\ &=\frac{1}{3} \rho b h^{3} \end{aligned} $$ and the moment of inertia of the lamina about the $y$-axis is: $$ \begin{aligned} I_{y} &=\iint_{D} x^{2} \rho(x, y) d A \\ &=\int_{0}^{h} \int_{0}^{b} \rho x^{2} d x d y \\ &=\rho \int_{0}^{b} x^{2} d x \int_{0}^{h} d y \\ &=\rho\left[\frac{1}{3} x^{3}\right]_{0}^{b}[y]_{0}^{h} \\ &=\frac{1}{3} \rho b^{3} h. \end{aligned} $$ Notice that the mass of the rectangle is $m =\text { density * area }= \rho* bh $. So, the radius of gyration $\overline{\bar{y}}$ with respect to the $x$-axis is given by: $$ \overline{\bar{y}}^{2}=\frac{I_{x}}{m}=\frac{\frac{1}{3} \rho b h^{3}}{\rho b h}=\frac{h^{2}}{3} \Rightarrow \overline{\bar{y}}=\frac{h}{\sqrt{3}} $$ and the radius of gyration $\overline{\bar{x}}$ with respect to the $y$-axis is given by: $$ \overline{\bar{x}} ^{2}=\frac{I_{y}}{m}=\frac{\frac{1}{3} \rho^{3} h}{\rho b h}=\frac{b^{2}}{3} \Rightarrow \overline{\bar{x}}=\frac{b}{\sqrt{3}} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.