Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 15 - Section 15.4 - Applications of Double Integrals - 15.4 Exercise - Page 1078: 25

Answer

$$ \begin{aligned} I_{x} &=\frac{1}{16} \rho a^{4} \pi , \end{aligned} $$ $$ \begin{aligned} I_{y} &=\frac{1}{16} \rho a^{4} \pi, \end{aligned} $$ $$ \overline{\bar{x}}=\overline{\bar{y}}=\frac{a}{2}. $$

Work Step by Step

A lamina with constant density $\rho(x, y)= \rho $ occupies the given disk $D$ in the first quadrant: $$ D=\left\{(x, y ) | \quad x \geq 0,\, y \geq 0 , \quad x^{2}+y^{2}\leq a^{2} \right\} $$ In polar coordinates, the region $D$ is $$ D=\left\{(r, \theta) | 0 \leq r \leq a, \quad 0 \leq \theta \leq \frac{\pi}{2} \right\} $$ So, the moment of inertia of the lamina about the $x$-axis is: $$ \begin{aligned} I_{x} &=\iint_{D} y^{2} \rho d A\\ &=\int_{0}^{\pi / 2} \int_{0}^{a} \rho(r \sin \theta)^{2} r d r d \theta \\ &=\rho \int_{0}^{\pi / 2} \sin ^{2} d \theta \int_{0}^{a} r^{3} d r \\ &=\rho\left[\frac{1}{2} \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi / 2}\left[\frac{1}{4} r^{4}\right]_{0}^{a}\\ &=\rho\left(\frac{\pi}{4}\right)\left(\frac{1}{4} a^{4}\right)\\ &=\frac{1}{16} \rho a^{4} \pi , \end{aligned} $$ and the moment of inertia of the lamina about the $y$-axis is: $$ \begin{aligned} I_{y} &=\iint_{D} x^{2} \rho d A\\ &=\int_{0}^{\pi / 2} \int_{0}^{a} \rho(r \cos \theta)^{2} r d r d \theta \\ &=\rho \int_{0}^{\pi / 2} \cos ^{2} d \theta \int_{0}^{a} r^{3} d r \\ &=\rho\left[\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi / 2}\left[\frac{1}{4} r^{4}\right]_{0}^{a} \\ &=\rho\left(\frac{\pi}{4}\right)\left(\frac{1}{4} a^{4}\right) \\ &=\frac{1}{16} \rho a^{4} \pi. \end{aligned} $$ Notice that the mass of the region $D$ is $m =\text { density * area }= \rho* \frac{1}{4} \pi a^{2} $. So, the radius of gyration $\overline{\bar{y}}$ with respect to the $x$-axis is given by: $$ \overline{\bar{y}}^{2}=\frac{I_{x}}{m}=\frac{\frac{1}{16} \rho a^{4} \pi}{ \rho. \frac{1}{4} \pi a^{2}}=\frac{a^{2}}{4} \Rightarrow \overline{\bar{y}}=\frac{a}{2}, $$ and the radius of gyration $\overline{\bar{x}}$ with respect to the $y$-axis is given by: $$ \overline{\bar{x}} ^{2}=\frac{I_{y}}{m}=\frac{\frac{1}{16} \rho a^{4} \pi}{ \rho. \frac{1}{4} \pi a^{2}}=\frac{a^{2}}{4} \Rightarrow \overline{\bar{x}}=\frac{a}{2}. $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.