Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.8 - Power Series - 11.8 Exercises - Page 786: 7

Answer

Radius of convergence: $5$ Interval of convergence: $(-5, 5)$

Work Step by Step

If $a_n = \frac{n}{5^n} x^n$, then $\lim\limits_{n \to \infty} |\frac{a_n}{a_{n+1}}| = \lim\limits_{n \to \infty} |\frac{(n+1)x^{n+1}}{5^{n+1}}*\frac{5^n}{nx_n}|$ $ = \lim\limits_{n \to \infty} |\frac{(n+1)x}{5n}| = \lim\limits_{n \to \infty} (\frac{1}{5} + \frac{1}{5n})|x| = \frac{|x|}{5}$. By Ratio Test, series $\Sigma_{n=1}^{\infty} \frac{n}{5^n} x^n$ converges when $\frac{|x|}{5}\lt1 \Leftrightarrow |x| \lt 5$ so radius of convergence is 5. When $x = \pm 5$, both series $\Sigma_{n=1}^{\infty} \frac{n(\pm 5)^{2}}{5^n} = \Sigma_{n=1}^{\infty} (\pm 1)^{n}n$ diverge by Test of Divergence, since $\lim\limits_{n \to \infty} |(\pm 1)^{n}n| = \infty$. Thus, the interval of convergence is $(-5, 5)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.