Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.8 - Power Series - 11.8 Exercises - Page 786: 39

Answer

$R=k^{k}$

Work Step by Step

Let $a_{n}=\frac{(n!)^{k}x^{n}}{(kn)!}$, then $\lim\limits_{n \to \infty}|\frac{a_{n+1}}{a_{n}}|=\lim\limits_{n \to \infty}|\dfrac{\frac{((n+1)!)^{k}x^{n+1}}{(k(n+1))!}}{\frac{(n!)^{k}x^{n}}{(kn)!}}|$ $=|x|(\frac{1}{k})^{k}$ $=|x|(\frac{1}{k})^{k}\lt 1$ Hence, $R=k^{k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.