Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.8 - Power Series - 11.8 Exercises - Page 786: 33

Answer

$R=\frac{1}{5}$ ; interval of convergence is $[\frac{3}{5},1)$

Work Step by Step

Let $a_{n}=\frac{(5x-4)^{n}}{n^{3}}$, then $\lim\limits_{n \to \infty}|\frac{a_{n+1}}{a_{n}}|=\lim\limits_{n \to \infty}|\dfrac{\frac{(5x-4)^{n+1}}{(n+1)^{3}}}{\frac{(5x-4)^{n}}{n^{3}}}|$ $=|5x-4|$ $=|5x-4|\lt 1$ Hence, $R=\frac{1}{5}$ ; interval of convergence is $[\frac{3}{5},1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.