Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.4 - The Comparison Tests - 11.4 Exercises - Page 765: 51

Answer

$\Sigma a_{n}$ is divergent.

Work Step by Step

Given that $a_{n}\gt 0$ , we can apply the limit comparison test with $b_{n}=\frac{1}{n}$ Since, $\Sigma_{n=0}^{\infty}b_{n}=\Sigma_{n=0}^{\infty}\frac{1}{n}$ diverges If $\lim\limits_{n\to \infty}\frac{a_{n}}{b_{n}}\ne 0$ Then according to the limit comparison test $\Sigma_{n=0}^{\infty}a_{n}$ will also diverge. $\lim\limits_{n\to \infty}\frac{a_{n}}{b_{n}}=\lim\limits_{n\to \infty}\frac{a_{n}}{1/n}=\lim\limits_{n\to \infty}na_{n}$ $\ne 0$ Hence, $\Sigma a_{n}$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.