Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.10 - Taylor and Maclaurin Series - 11.10 Exercises - Page 808: 43

Answer

$\Sigma_{n=0}^{\infty}(-1)^{n}\frac{x^{4n+1}}{2^{2n}(2n)!}$ $R=\infty$

Work Step by Step

$xcos(\frac{1}{2}x^{2})=x\Sigma_{n=0}^{\infty}(-1)^{n}\frac{(\frac{1}{2}x^{2})^{2n}}{2n!}$ $=x\Sigma_{n=0}^{\infty}(-1)^{n}\frac{(\frac{1}{2})^{2n}x^{4n}}{2n!}$ $=\Sigma_{n=0}^{\infty}(-1)^{n}\frac{x^{4n+1}}{2^{2n}(2n)!}$ $R=\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.