Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.10 - Taylor and Maclaurin Series - 11.10 Exercises - Page 808: 41

Answer

$xcos(2x)=\Sigma_{n=0}^{\infty}(-1)^{n}\frac{(2)^{2n}x^{2n+1}}{(2n)!}$ $R=\infty$

Work Step by Step

$f(x)=xcos(2x)$ Since, $sinx=\Sigma_{n=0}^{\infty}(-1)^{n}\frac{{(x)}^{(2n)}}{(2n)!}$ Change $x$ to $2x$ $cos(2x)=\Sigma_{n=0}^{\infty}(-1)^{n}\frac{(2x)^{2n}}{(2n)!}=\Sigma_{n=0}^{\infty}(-1)^{n}\frac{(2)^{2n}x^{2n}}{(2n)!}$ Hence, $xcos(2x)=x \cdot \Sigma_{n=0}^{\infty}(-1)^{n}\frac{(2x)^{2n}}{(2n)!}=\Sigma_{n=0}^{\infty}(-1)^{n}\frac{(2)^{2n}x^{2n}}{(2n)!}$ $xcos(2x)=\Sigma_{n=0}^{\infty}(-1)^{n}\frac{(2)^{2n}x^{2n+1}}{(2n)!}$ $R=\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.