Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 11 - Section 11.10 - Taylor and Maclaurin Series - 11.10 Exercises - Page 808: 19

Answer

Maclaurin series is: $\Sigma_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}$ and $R=\infty$

Work Step by Step

$f(x)=sinhx=\Sigma_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}$ $\lim\limits_{n \to \infty}|\frac{a_{n+1}}{a_{n}}|=\lim\limits_{n \to \infty}|\frac{\frac{x^{2n+3}}{(2n+3)!}}{\frac{x^{2n+1}}{(2n+1)!}}|$ $=\lim\limits_{n \to\infty}|\frac{x^{2}}{(2n+2)(2n+3)}|$ $=\lim\limits_{n \to\infty}|\frac{x^{2}}{\infty}|$ $=0\lt 1$ Therefore, the Maclaurin series converges for all values of $x$. Maclaurin series is: $\Sigma_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}$ and $R=\infty
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.