Answer
Graph II
Work Step by Step
Find $e$ and $d$:
$r=\frac{12}{8-7\cos\theta}$
$\frac{ed}{1-\cos\theta}=\frac{\frac{12}{8}}{1-\frac{7}{8}\cos\theta}$
$e=\frac{7}{8}$ and $ed=\frac{12}{8}$
$e=\frac{7}{8}$ and $d=\frac{12}{7}$
Using Theorem 6, and using part (b) of Figure 2, the given polar equation represents a horizontal ellipse with the eccentricity $\frac{7}{8}$ and the directrix $x=-\frac{12}{7}$.
0It is shown in Graph II.