Answer
Vertex: $(3,-1)$
Focus: $(3,1)$
Directrix: $y=-3$
Work Step by Step
Recall: The parabola $(x-a)^2=4p(y-b)$ has a vertex $(a,b)$, a focus $(a,p+b)$, and a directrix $y=-p+b$.
We have $(x-3)^2=8(y+1)$ or equivalently $(x-3)^2=8(y-(-1))$.
Then,
$(a,b)=(3,-1)$
$4p=8$
$p=\frac{8}{4}$
$p=2$
So, the vertex is $(3,-1)$, the focus is $(3,1)$, and the directrix is $y=-3$.
Sketch the graph: