Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 682: 58

Answer

$\frac{7\pi}{3}$

Work Step by Step

Recall: The speed of the particle is formulated by $v(t)=\sqrt{(dx/dt)^2+(dy/dt)^2}$. Given: $x=2+5\cos (\pi t/3)$ and $y=-2+7\sin(\pi t/3)$ Find $dx/dt$ and $dy/dt$: $dx/dt=0+5\cdot \frac{\pi}{3}\cdot (-\sin (\pi t/3))=-\frac{5\pi}{3}\sin (\pi t/3)$ $dy/dt=0+7\cdot \frac{\pi}{3}\cdot \cos (\pi t/3)=\frac{7\pi}{3}\cos(\pi t/3)$ Evaluate the speed of the particle at time $t=3$: $v(t)=\sqrt{(-\frac{5\pi}{3}\sin(\pi t/3))^2+(\frac{7\pi}{3}\cos(\pi t/3))^2}$ $v(t)=\sqrt{\frac{25\pi^2}{9}\sin^2(\pi t/3)+\frac{49\pi^2}{9}\cos^2(\pi t/3)}$ $v(3)=\sqrt{\frac{25\pi^2}{9}\sin^2\pi+\frac{49\pi^2}{9}\cos^2\pi}$ $v(3)=\sqrt{\frac{25\pi^2}{9}\cdot 0^2+\frac{49\pi^2}{9}\cdot (-1)^2}$ $v(3)=\sqrt{\frac{49\pi^2}{9}}$ $v(3)=\frac{7\pi}{3}$ Thus, the speed of the particle is $\frac{7\pi}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.