Introductory Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-805-X
ISBN 13: 978-0-13417-805-9

Chapter 7 - Section 7.2 - Multiplying and Dividing Rational Expressions - Exercise Set - Page 499: 50


$\displaystyle \frac{x(x+3)}{(x-2)(x-1)}$

Work Step by Step

Dividing with $\displaystyle \frac{P}{Q}$ equals multiplying with the reciprocal, $\displaystyle \frac{Q}{P}.$ $\displaystyle \frac{x^{2}+x}{x^{2}-4}\div\frac{x^{2}-1}{x^{2}+5x+6}=\frac{x^{2}+x}{x^{2}-4}\cdot\frac{x^{2}+5x+6}{x^{2}-1}\qquad$... factor what you can $x^{2}+x=x(x+1)$ $x^{2}-4=(x+2)(x-2)$ $x^{2}-1=(x+1)(x-1)$ $x^{2}+5x+6=(x+2)(x+3)$ $=\displaystyle \frac{x(x+1)}{(x+2)(x-2)}\cdot\frac{(x+2)(x+3)}{(x+1)(x-1)}\qquad$... divide out the common factors $=\displaystyle \frac{x(1)}{(1)(x-2)}\cdot\frac{(1)(x+3)}{(1)(x-1)}\qquad$ = $\displaystyle \frac{x(x+3)}{(x-2)(x-1)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.