Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.8 - Modeling Using Variation - Exercise Set - Page 489: 36

Answer

$50 $.

Work Step by Step

Step 1:- Translate the statement to form an equation. Let the IQ be $I$, the mental age be $M$, and the chronological age be $C$. Because $I$ varies directly as $M$ and inversely as $C$, we have: $\Rightarrow I=\frac{kM}{C}$ ...... (1) Step 2:- Substitute the first set of values into the equation to find the value of $k$. The given values are $M=25,C=20$ and $I=125$. Substitute into the equation (1). $\Rightarrow 125=\frac{k(25)}{20}$ Multiply both sides by $\frac{20}{25}$. $\Rightarrow \frac{20}{25}\cdot 125=\frac{20}{25}\cdot \frac{k(25)}{20}$ Simplify. $\Rightarrow 100=k$ Step 3:- Substitute the value of $k$ into the original equation. Substitute $k=100$ into the equation (1). $\Rightarrow I=\frac{100M}{C}$ ...... (2) Step 4:- Solve the equation to find the required value. Substitute $M=40$ and $I=80$ into the equation (2). $\Rightarrow 80=\frac{100(40)}{C}$ Simplify. $\Rightarrow 80=\frac{4000}{C}$ Multiply both sides by $\frac{C}{80}$. $\Rightarrow \frac{C}{80}\cdot 80=\frac{C}{80}\cdot \frac{4000}{C}$ Simplify. $\Rightarrow C=50$ Hence, the chronological age is $50 $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.